dot-get_gtw.Rd
g_tw: total conductance to water vapour (m/s)
.get_gtw(T_leaf, pars, unitless)
Leaf temperature in Kelvin
Concatenated parameters (leaf_par
, enviro_par
, and constants
)
Logical. Should function use parameters with units
? The function is faster when FALSE, but input must be in correct units or else results will be incorrect without any warning.
Value in m/s of class units
Total conductance to water vapor: The total conductance to water vapor (\(g_\mathrm{tw}\)) is the sum of the parallel lower (abaxial) and upper (adaxial) conductances:
$$g_\mathrm{tw} = g_\mathrm{w,lower} + g_\mathrm{w,upper}$$
The conductance to water vapor on each surface is a function of parallel stomatal (\(g_\mathrm{sw}\)) and cuticular (\(g_\mathrm{uw}\)) conductances in series with the boundary layer conductance (\(g_\mathrm{bw}\)). The stomatal, cuticular, and boundary layer conductance on the lower surface are:
$$g_\mathrm{sw,lower} = g_\mathrm{sw} (1 - sr) R (T_\mathrm{leaf} + T_\mathrm{air}) / 2$$
$$g_\mathrm{uw,lower} = g_\mathrm{uw} / 2 R (T_\mathrm{leaf} + T_\mathrm{air}) / 2$$
See .get_gbw
for details on calculating boundary layer conductance. The equations for the upper surface are:
$$g_\mathrm{sw,upper} = g_\mathrm{sw} sr R (T_\mathrm{leaf} + T_\mathrm{air}) / 2$$
$$g_\mathrm{uw,upper} = g_\mathrm{uw} / 2 R (T_\mathrm{leaf} + T_\mathrm{air}) / 2$$
Note that the stomatal and cuticular conductances are given in units of (\(\mu\)mol H2O) / (m\(^2\) s Pa) (see make_leafpar
) and converted to m/s using the ideal gas law. The total leaf stomatal (\(g_\mathrm{sw}\)) and cuticular (\(g_\mathrm{uw}\)) conductances are partitioned across lower and upper surfaces. The stomatal conductance on each surface depends on stomatal ratio (sr); the cuticular conductance is assumed identical on both surfaces.
Symbol | R | Description | Units | Default |
\(g_\mathrm{sw}\) | g_sw | stomatal conductance to H2O | (\(\mu\)mol H2O) / (m\(^2\) s Pa) | 5 |
\(g_\mathrm{uw}\) | g_uw | cuticular conductance to H2O | (\(\mu\)mol H2O) / (m\(^2\) s Pa) | 0.1 |
\(R\) | R | ideal gas constant | J / (mol K) | 8.3144598 |
\(\mathrm{logit}(sr)\) | logit_sr | stomatal ratio (logit transformed) | none | 0 = logit(0.5) |
\(T_\mathrm{air}\) | T_air | air temperature | K | 298.15 |
\(T_\mathrm{leaf}\) | T_leaf | leaf temperature | K | input |
# Total conductance to water vapor
## Hypostomatous leaf; default parameters
leaf_par <- make_leafpar(replace = list(logit_sr = set_units(-Inf)))
enviro_par <- make_enviropar()
constants <- make_constants()
pars <- c(leaf_par, enviro_par, constants)
T_leaf <- set_units(300, K)
## Fixing boundary layer conductance rather than calculating
gbw_lower <- set_units(0.1, m / s)
gbw_upper <- set_units(0.1, m / s)
# Lower surface ----
## Note that pars$logit_sr is logit-transformed! Use stats::plogis() to convert to proportion.
gsw_lower <- set_units(pars$g_sw * (set_units(1) - stats::plogis(pars$logit_sr)) * pars$R *
((T_leaf + pars$T_air) / 2), "m / s")
guw_lower <- set_units(pars$g_uw * 0.5 * pars$R * ((T_leaf + pars$T_air) / 2), m / s)
gtw_lower <- 1 / (1 / (gsw_lower + guw_lower) + 1 / gbw_lower)
# Upper surface ----
gsw_upper <- set_units(pars$g_sw * stats::plogis(pars$logit_sr) * pars$R *
((T_leaf + pars$T_air) / 2), m / s)
guw_upper <- set_units(pars$g_uw * 0.5 * pars$R * ((T_leaf + pars$T_air) / 2), m / s)
gtw_upper <- 1 / (1 / (gsw_upper + guw_upper) + 1 / gbw_upper)
## Lower and upper surface are in parallel
g_tw <- gtw_lower + gtw_upper