Running 2-parameter sensitivity analyses
Usage
analyze_sensitivity(
data,
funct,
test1 = NA,
values1,
test2 = NA,
values2,
element_out = 1,
...
)
Value
analyze_sensitivity runs a 2-parameter sensitivity analysis. Note that any parameter value combinations that break the input function WILL break this function. For 1-parameter sensitivity analysis, use test1 only.
Examples
# \donttest{
# Read in your data
# Note that this data is coming from data supplied by the package
# hence the complicated argument in read.csv()
# This dataset is a CO2 by light response curve for a single sunflower
data <- read.csv(system.file("extdata", "A_Ci_Q_data_1.csv",
package = "photosynthesis"
))
# Define a grouping factor based on light intensity to split the ACi
# curves
data$Q_2 <- as.factor((round(data$Qin, digits = 0)))
# Convert leaf temperature to K
data$T_leaf <- data$Tleaf + 273.15
# Run a sensitivity analysis on gamma_star and mesophyll conductance
# at 25 Celsius for one individual curve
# pars <- analyze_sensitivity(
# data = data[data$Q_2 == 1500, ],
# funct = fit_aci_response,
# varnames = list(
# A_net = "A",
# T_leaf = "T_leaf",
# C_i = "Ci",
# PPFD = "Qin"
# ),
# useg_mct = TRUE,
# test1 = "gamma_star25",
# element_out = 1,
# test2 = "g_mc25",
# fitTPU = TRUE,
# Ea_gamma_star = 0,
# Ea_g_mc = 0,
# values1 = seq(
# from = 20,
# to = 40,
# by = 2
# ),
# values2 = seq(
# from = 0.5,
# to = 2,
# by = 0.1
# )
# )
# Graph V_cmax
# ggplot(pars, aes(x = gamma_star25, y = g_mc25, z = V_cmax)) +
# geom_tile(aes(fill = V_cmax)) +
# labs(
# x = expression(Gamma * "*"[25] ~ "(" * mu * mol ~ mol^
# {
# -1
# } * ")"),
# y = expression(g[m][25] ~ "(" * mu * mol ~ m^{
# -2
# } ~ s^{
# -1
# } ~ Pa^
# {
# -1
# } * ")")
# ) +
# scale_fill_distiller(palette = "Greys") +
# geom_contour(colour = "Black", size = 1) +
# theme_bw()
# # }