Skip to contents

Make lists of parameters for photosynthesis

make_leafpar

make_enviropar

make_bakepar

make_constants

Usage

make_leafpar(replace = NULL, use_tealeaves)

make_enviropar(replace = NULL, use_tealeaves)

make_bakepar(replace = NULL)

make_constants(replace = NULL, use_tealeaves)

Arguments

replace

A named list of parameters to replace defaults. If NULL, defaults will be used.

use_tealeaves

Logical. Should leaf energy balance be used to calculate leaf temperature (T_leaf)? If TRUE, tleaf() calculates T_leaf. If FALSE, user-defined T_leaf is used. Additional parameters and constants are required, see make_parameters().

Value

make_leafpar: An object inheriting from class leaf_par()
make_enviropar: An object inheriting from class enviro_par()
make_bakepar: An object inheriting from class bake_par()
make_constants: An object inheriting from class constants()

Details

Constants:

SymbolRDescriptionUnitsDefault
\(D_{\mathrm{c},0}\)D_c0diffusion coefficient for CO2 in air at 0 °Cm\(^2\) / s\(1.29\times 10^{-5}\)
\(D_{\mathrm{h},0}\)D_h0diffusion coefficient for heat in air at 0 °Cm\(^2\) / s\(1.90\times 10^{-5}\)
\(D_{\mathrm{m},0}\)D_m0diffusion coefficient for momentum in air at 0 °Cm\(^2\) / s\(1.33\times 10^{-5}\)
\(D_{\mathrm{w},0}\)D_w0diffusion coefficient for water vapor in air at 0 °Cm\(^2\) / s\(2.12\times 10^{-5}\)
\(\epsilon\)epsilonratio of water to air molar massesnone0.622
\(G\)Ggravitational accelerationm / s\(^2\)9.8
\(eT\)eTexponent for temperature dependence of diffusionnone1.75
\(R\)Rideal gas constantJ / mol / K8.31
\(\sigma\)sigmaStephan-Boltzmann constantW / m\(^2\) / K\(^4\)\(5.67\times 10^{-8}\)
\(f_\mathrm{Sh}\)f_shfunction to calculate constant(s) for Sherwood numbernoneNA
\(f_\mathrm{Nu}\)f_nufunction to calculate constant(s) for Nusselt numbernoneNA

Baking (i.e. temperature response) parameters:

SymbolRDescriptionUnitsDefault
\(D_\mathrm{s,gmc}\)Ds_gmcempirical temperature response parameterJ / mol / K487
\(D_\mathrm{s,Jmax}\)Ds_Jmaxempirical temperature response parameterJ / mol / K388
\(E_\mathrm{a,\Gamma *}\)Ea_gammastarempirical temperature response parameterJ / mol24500
\(E_\mathrm{a,gmc}\)Ea_gmcempirical temperature response parameterJ / mol68900
\(E_\mathrm{a,Jmax}\)Ea_Jmaxempirical temperature response parameterJ / mol56100
\(E_\mathrm{a,KC}\)Ea_KCempirical temperature response parameterJ / mol81000
\(E_\mathrm{a,KO}\)Ea_KOempirical temperature response parameterJ / mol23700
\(E_\mathrm{a,Rd}\)Ea_Rdempirical temperature response parameterJ / mol40400
\(E_\mathrm{a,Vcmax}\)Ea_Vcmaxempirical temperature response parameterJ / mol52200
\(E_\mathrm{a,Vtpu}\)Ea_Vtpuempirical temperature response parameterJ / mol52200
\(E_\mathrm{d,gmc}\)Ed_gmcempirical temperature response parameterJ / mol149000
\(E_\mathrm{d,Jmax}\)Ed_Jmaxempirical temperature response parameterJ / mol121000

Environment parameters:

SymbolRDescriptionUnitsDefault
\(C_\mathrm{air}\)C_airatmospheric CO2 concentrationumol/mol420
\(O\)Oatmospheric O2 concentrationmol/mol0.21
\(P\)Patmospheric pressurekPa101
\(\mathrm{PPFD}\)PPFDphotosynthetic photon flux densityumol / m\(^2\) / s1500
\(\mathrm{RH}\)RHrelative humiditynone0.5
\(u\)windwindspeedm / s2

Leaf parameters:

SymbolRDescriptionUnitsDefault
\(d\)leafsizeleaf characteristic dimensionm0.1
\(\Gamma*\)gamma_starchloroplastic CO2 compensation point (T_leaf)umol/molNA
\(\Gamma*_{25}\)gamma_star25chloroplastic CO2 compensation point (25 °C)umol/mol37.9
\(g_\mathrm{mc}\)g_mcmesophyll conductance to CO2 (T_leaf)mol / m\(^2\) / sNA
\(g_\mathrm{mc,25}\)g_mc25mesophyll conductance to CO2 (25 °C)mol / m\(^2\) / s0.4
\(g_\mathrm{sc}\)g_scstomatal conductance to CO2mol / m\(^2\) / s0.4
\(g_\mathrm{uc}\)g_uccuticular conductance to CO2mol / m\(^2\) / s0.01
\(J_\mathrm{max,25}\)J_max25potential electron transport (25 °C)umol / m\(^2\) / s200
\(J_\mathrm{max}\)J_maxpotential electron transport (T_leaf)umol / m\(^2\) / sNA
\(k_\mathrm{mc}\)k_mcpartition of g_mc to lower mesophyllnone1
\(k_\mathrm{sc}\)k_scpartition of g_sc to lower surfacenone1
\(k_\mathrm{uc}\)k_ucpartition of g_uc to lower surfacenone1
\(K_\mathrm{C,25}\)K_C25Michaelis constant for carboxylation (25 °C)umol / mol268
\(K_\mathrm{C}\)K_CMichaelis constant for carboxylation (T_leaf)umol / molNA
\(K_\mathrm{O,25}\)K_O25Michaelis constant for oxygenation (25 °C)umol / mol165000
\(K_\mathrm{O}\)K_OMichaelis constant for oxygenation (T_leaf)umol / molNA
\(\phi_J\)phi_Jinitial slope of the response of J to PPFDnone0.331
\(R_\mathrm{d,25}\)R_d25nonphotorespiratory CO2 release (25 °C)umol / m\(^2\) / s2
\(R_\mathrm{d}\)R_dnonphotorespiratory CO2 release (T_leaf)umol / m\(^2\) / sNA
\(\theta_J\)theta_Jcurvature factor for light-response curvenone0.825
\(T_\mathrm{leaf}\)T_leafleaf temperatureK298
\(V_\mathrm{c,max,25}\)V_cmax25maximum rate of carboxylation (25 °C)umol / m\(^2\) / s150
\(V_\mathrm{c,max}\)V_cmaxmaximum rate of carboxylation (T_leaf)umol / m\(^2\) / sNA
\(V_\mathrm{tpu,25}\)V_tpu25rate of triose phosphate utilization (25 °C)umol / m\(^2\) / s200
\(V_\mathrm{tpu}\)V_tpurate of triose phosphate utilisation (T_leaf)umol / m\(^2\) / sNA

If use_tealeaves = TRUE, additional parameters are:

Constants:

SymbolRDescriptionUnitsDefault
\(c_p\)c_pheat capacity of airJ / g / K1.01
\(R_\mathrm{air}\)R_airspecific gas constant for dry airJ / kg / K287

Baking (i.e. temperature response) parameters:

SymbolRDescriptionUnitsDefault

Environment parameters:

SymbolRDescriptionUnitsDefault
\(E_q\)E_qenergy per mole quantakJ / mol220
\(f_\mathrm{PAR}\)f_parfraction of incoming shortwave radiation that is photosynthetically active radiation (PAR)none0.5
\(r\)rreflectance for shortwave irradiance (albedo)none0.2
\(T_\mathrm{air}\)T_airair temperatureK298
\(T_\mathrm{sky}\)T_skysky temperatureKNA

Leaf parameters:

SymbolRDescriptionUnitsDefault
\(\alpha_\mathrm{l}\)abs_labsorbtivity of longwave radiation (4 - 80 um)none0.97
\(\alpha_\mathrm{s}\)abs_sabsorbtivity of shortwave radiation (0.3 - 4 um)none0.5
\(g_\mathrm{sw}\)g_swstomatal conductance to H2Omol / m\(^2\) / sNA
\(g_\mathrm{uw}\)g_uwcuticular conductance to H2Omol / m\(^2\) / sNA
\(\mathrm{logit}(sr)\)logit_srstomatal ratio (logit transformed)noneNA

Optional leaf parameters:

SymbolRDescriptionUnitsDefault
\(\delta_\mathrm{ias,lower}\)delta_ias_lowereffective distance through lower internal airspaceumNA
\(\delta_\mathrm{ias,upper}\)delta_ias_uppereffective distance through upper internal airspaceumNA
\(A_\mathrm{mes} / A\)A_mes_Amesophyll surface area per unit leaf areanoneNA
\(g_\mathrm{liq,c,25}\)g_liqc25liquid-phase conductance to CO2 (25 °C)mol / m\(^2\) / sNA
\(g_\mathrm{liq,c}\)g_liqcliquid-phase conductance to CO2 (T_leaf)mol / m\(^2\) / sNA
\(g_\mathrm{ias,c,lower}\)g_iasc_lowerinternal airspace conductance to CO2 in lower part of leaf (T_leaf)mol / m\(^2\) / sNA
\(g_\mathrm{ias,c,upper}\)g_iasc_upperinternal airspace conductance to CO2 in upper part of leaf (T_leaf)mol / m\(^2\) / sNA

References

Buckley TN and Diaz-Espejo A. 2015. Partitioning changes in photosynthetic rate into contributions from different variables. Plant, Cell & Environment 38: 1200-11.

Examples

bake_par = make_bakepar()
constants = make_constants(use_tealeaves = FALSE)
enviro_par = make_enviropar(use_tealeaves = FALSE)
leaf_par = make_leafpar(use_tealeaves = FALSE)

leaf_par = make_leafpar(
  replace = list(
    g_sc = set_units(0.3, mol / m^2 / s),
    V_cmax25 = set_units(100, umol / m^2 / s)
  ), use_tealeaves = FALSE
)