Temperature response functions

t_response_arrhenius(T_leaf, Ea)

t_response_arrhenius_kruse(dEa, Ea_ref, Par_ref, T2)

t_response_arrhenius_medlyn(T_leaf, Ea, Hd, dS)

t_response_arrhenius_topt(T_leaf, Ea, Hd, Topt)

t_response_calc_dS(Ea, Hd, Topt)

t_response_calc_topt(Hd, dS, Ea)

t_response_heskel(T_leaf, a, b, c)

t_response_mmrt(dCp, dG, dH, T_leaf)

Arguments

T_leaf

Leaf temperature in K

Ea

Activation energy in J mol-1 (Medlyn et al. 2002)

dEa

Temperature-dependent change in Ea in K^2 (Kruse et al. 2008)

Ea_ref

Activation energy in J mol-1 (Kruse et al. 2008)

Par_ref

Parameter at reference temperature of 25 Celsius (Kruse et al. 2008)

T2

Leaf temperature term (Kruse et al. 2008)

Hd

Deactivation energy in J mol-1 (Medlyn et al. 2002)

dS

Entropy parameter in J mol-1 (Medlyn et al. 2002)

Topt

Optimum temperature of the process in K (Medlyn et al. 2002)

a

Constant to minimize residuals (Heskel et al. 2016)

b

Linear coefficient to minimize residuals (Heskel et al. 2016)

c

Quadratic coefficient to minimize residuals (Heskel et al. 2016)

dCp

Change in heat capacity of the enzyme between the enzyme-substrate #' and enzyme-transition states in J mol-1 K-1 (Hobbs et al. 2013)

dG

Change in Gibbs free energy of the reaction at 25 C in J mol-1 (Hobbs et al. 2013)

dH

Change in enthalpy of the reaction at 25 C in J mol-1 (Hobbs et al. 2013)

Value

t_response_arrhenius calculates the rate of a process based on an Arrhenius-type curve

t_response_arrhenius_kruse fits a peaked Arrhenius response according to Kruse et al. 2008.

t_response_arrhenius_medlyn is a peaked Arrhenius response as found in Medlyn et al. 2002.

t_response_arrhenius_topt is a peaked Arrhenius temperature response function.

t_response_calc_dS calculates dS from the fitted Topt model.

t_response_calc_topt calculates Topt for a process from Arrhenius parameters.

t_response_heskel is a quadratic temperature response according to Heskel et al. 2016.

t_response_mmrt is a macromolecular rate theory temperature response according to Hobbs et al. 2013.

References

Arrhenius S. 1915. Quantitative laws in biological chemistry. Bell.

Heskel et al. 2016. Convergence in the temperature response of leaf respiration across biomes and plant functional types. PNAS 113:3832-3837

Hobbs et al. 2013. Change in heat capacity for enzyme catalysis determines temperature dependence of enzyme catalyzed rates. ACS Chemical Biology 8:2388-2393

Kruse J, Adams MA. 2008. Three parameters comprehensively describe the temperature response of respiratory oxygen reduction. Plant Cell Environ 31:954-967

Medlyn BE, Dreyer E, Ellsworth D, Forstreuter M, Harley PC, Kirschbaum MUF, Le Roux X, Montpied P, Strassemeyer J, Walcroft A, Wang K, Loutstau D. 2002. Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. Plant Cell Environ 25:1167-1179