Calculate the rate of electron transport as a function of photosynthetic photon flux density (PPFD).
Details
\(J\) as a function of PPFD is the solution to the quadratic expression:
$$0 = \theta_J J ^ 2 - J (J_\mathrm{max} + \phi_J PPFD) + J_\mathrm{max} \phi_J PPFD$$
Symbol | R | Description | Units | Default |
\(J_\mathrm{max}\) | J_max | potential electron transport (T_leaf) | \(\mu\)mol CO2 / (m\(^2\) s) | calculated |
\(\phi_J\) | phi_J | initial slope of the response of J to PPFD | none | 0.331 |
PPFD | PPFD | photosynthetic photon flux density | \(\mu\)mol quanta / (m^2 s) | 1500 |
\(\theta_J\) | theta_J | curvature factor for light-response curve | none | 0.825 |
Examples
library(magrittr)
library(photosynthesis)
bake_par = make_bakepar()
constants = make_constants(use_tealeaves = FALSE)
enviro_par = make_enviropar(use_tealeaves = FALSE)
leaf_par = make_leafpar(use_tealeaves = FALSE)
enviro_par$T_air = leaf_par$T_leaf
leaf_par %<>% bake(enviro_par, bake_par, constants)
pars = c(leaf_par, enviro_par, constants)
J(pars, FALSE)
#> 181.6577 [umol/m^2/s]